2022年中考数学大题狂做系列专题07数学部分说明:根据15年中考试题的数量,一共分为3期,大题狂做每期为10套。由8道解答题组成,时间为50分钟。1.(山东日照,第17题,9分)(9分)(1)先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值.【答案】(1)a﹣1,﹣1;(2)m=4.【解析】考点:1.分式的化简求值;2.二元一次方程组的解.2.(山东莱芜第19题,8分)(本题满分8分)2022年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?10\n【答案】(1)50(2)15(3)144°(4)【解析】(2)50×30%=15(人)ABCD了解程度人数510152025(3)360°×=144°(4).考点:数据分析(统计图,概率)3.(山东青岛第21题,8分)(本小题满分8分)已知:如图,△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE;垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【答案】略;AB∥DE且AB=DE.【解析】10\n考点:三角形全等、平行四边形的性质和判定.4.【2022山东德州,第19题】如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【答案】(1)△ABC是等边三角形;(2)CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大,为.【解析】试题解析:(1)△ABC是等边三角形.证明如下:在⊙O中,∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;10\n(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°,又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,∵∠APD=∠ADC,∠ABP=∠ACP,AP=AD,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,∵S△APE=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大,又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC==.考点:1.圆周角定理;2.全等三角形的判定与性质;3.等边三角形的判定与性质;4.垂径定理.5.(2022•聊城,第23题,8分)在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【答案】150元【解析】考点:分式方程的应用6.(山东淄博,第22题)如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)10\n【答案】两根较粗钢管AD和BC的长分别为58.2cm、90.3cm.【解析】试题解析:解:作FH⊥AB于H,DQ⊥AB于Q,如图2,FH=42cm,在Rt△BFH中,∵sin∠FBH=,∴BF=≈48.28,∴BC=BF+CF=48.28+42≈90.3(cm);在Rt△BDQ中,∵tan∠DBQ=,∴BQ=,在Rt△ADQ中,∵tan∠DAQ=,∴AQ=,∵BQ+AQ=AB=43,∴+=43,解得DQ≈56.999,在Rt△ADQ中,∵sin∠DAQ=,∴AD=≈58.2(cm).答:两根较粗钢管AD和BC的长分别为58.2cm、90.3cm.10\n考点:解直角三角形的应用.7.(山东潍坊,第22题,11分)(11分)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).(1)①当t=2分钟时,速度v= 米/分钟,路程s= 米;②当t=15分钟时,速度v= 米/分钟,路程s= 米.(2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.【答案】(1)200,200300,4050;(2);(3)4分钟.【解析】试题分析:(1)根据点A坐标可得v=100t,所以当t=2时,v=200,此时根据三角形的面积公式可求出路程为200米;当t=15时,v=300,此时路程为+12×300=4050米;(2)观察函数图象可知:当时,根据三角形的面积公式可求出,当时,利用梯形的面积公式可求出;(3)根据条件判断可得t>3,此时,令s=750,解方程即可.10\n②当3<t≤15时,设l与AB的交点为Q,则Q(t,300),∴S=,........................8分(3)∵当0≤t≤3,S最大=50×9=450,∵750>50,∴当3<t≤15时,450<S≤4050,...................................................9分则令750=300t﹣450,解得:t=4.故王叔叔该天上班从家出发行进了750米时所用的时间4分钟...........11分考点:1.函数的图象;2.函数与方程的关系.8.(山东烟台,第24题,12分)(本题满分12分)如图,在平面直角坐标系中,抛物线与⊙M相交于A、B、C、D四点。其中AB两点的坐标分别为(-1,0),(0,-2),点D在轴上且AD为⊙M的直径。点E是⊙M与轴的另一个交点,过劣弧上的点F作FH⊥AD于点H,且FH=1.5。(1)求点D的坐标及该抛物线的表达式;(2)若点P是轴上的一个动点,试求出⊿PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使⊿QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由。10\n【答案】【解析】(3)首先点M本身就在抛物线对称轴上,其坐标为;点C是点B关于抛物线对称轴的对称点,所以点C的坐标为(3,-2);求Q点的坐标,根据题意可设Q点为()。⊿QCM是等腰三角形,则可能有三种情况,分别是QC=MC;QM=MC;QC=QM。根据这三种情况就能求得Q点的坐标可能是或或.试题解析:(1)∵A(-1,0),B(0,-2)∴OE=OB=2,OA=1,∵AD是⊙M的直径,∴OE·OB=OA·OD,即:2²=1·OD,OD=4,∴D(4,0),把A(-1,0),B(0,-2),D(4,0)代入得:10\n,即该抛物线的表达式为:.∵A(-1,0),D(4,0),∴AD=5,设DH=x,则AH=5-x,即1.5²=x(5-x),5x-x²=,4x²-20x+9=0,(2x-1)(2x-9)=0,由AH>DH,∴DH=,∴OH=OD-DH=,∴F(3.5,1.5),设直线BF的解析式为,则3.5k+b=1.5;b=-2,则k=1,b=-2,∴y=x-2,令y=0,则x=-2,∴P(2,0)(3)Q(,),Q(,-),Q(,-4),∴Q(,-).10\n考点:二次函数与圆10