专题12让抽象函数不再抽象考纲要求:抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识.函数的周期性、对称性一般与抽象函数结合,综合函数的其它性质一起考查.函数的周期性要紧扣周期函数的定义.要注意,函数的周期性只涉及到一个函数.函数的对称性比较复杂,要分清是一个函数的对称性,还是两个函数的对称性;分清是轴对称还是中心对称.基础知识回顾:一、解析式问题:1.换元法:即用中间变量表示原自变量的代数式,从而求出,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。2.凑配法:在已知的条件下,把并凑成以表示的代数式,再利用代换即可求.此解法简洁,还能进一步复习代换法。3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.5、方程组法:通过变量代换,构造方程组,再通过加减消元法消去无关的部分。二、求值问题三、定义域问题四、值域问题五、判断函数的奇偶性:六、单调性问题一般地,抽象函数所满足的关系式,应看作给定的运算法则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联。七、解抽象不等式(确定参数的取值范围)八、对称性问题九、周期问题-16-\n十.四类抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数。2、指数函数型抽象函数3、对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数。4、幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数。应用举例:招数一:赋值法【例1】【河南省南阳市第一中学2022届高三实验班第一次考试】fx为定义在R上的不等于0的函数,fπ2=0,且任意x,y∈R,有fx+fy=fx+y2⋅fx-y2,则下列式子中成立的是()A.fx+2π=fxB.f0=0C.f2x=2f2x-2D.fx+π=fx【答案】A招数二:函数的奇偶性和单调性的应用【例2】定义在上的单调递减函数:对任意都有,.(Ⅰ)判断函数的奇偶性,并证明之;(Ⅱ)若对任意,不等式(为常实数)都成立,求的取值范围;(Ⅲ)设,,,-16-\n,.若,,比较的大小并说明理由.【答案】(Ⅰ)为上的奇函数;证明见解析(Ⅱ)(Ⅲ);(Ⅰ)解:为上的奇函数证明:取得∴取得即:对任意都有∴∴为上奇函数(Ⅱ)∵∴∵在上单减∴在上恒成立-16-\n∴∴在上恒成立在上恒成立∴当时,∴即-16-\n同理:∴。招数三:抽象函数的周期性【例3】【河南省南阳市第一中学2022届高三第一次考试】设定义在上的函数满足,若,则=__________.【答案】.考点:函数的周期性.招数四:抽象函数综合题目【例4】【湖北省荆州中学2022届高三第二次月考】已知函数满足:①对任意的,都有;②对任意的都有.则______________.【答案】66-16-\n实战演练:1.已知定义在上的函数满足,且,则()A.2B.-2C.1D.-1【答案】A【解析】,,函数的周期为,故,故选A.2.已知函数f(x)是R上的奇函数,当x>0时为减函数,且f(2)=0,则xf(x-2)<0=( )A.x0<x<2或x>4B.xx<0或x>4C.x0<x<2或x>2D.x0<x<2或2<x<4【答案】A【解析】∵奇函数满足f(2)=0,∴f(−2)=−f(2)=0.对于{x|f(x−2)>0},当x−2>0时,f(x−2)>0=f(2),∵x∈(0,+∞)时,f(x)为减函数,∴0<x−2<2,∴2<x<4.当x−2<0时,不等式化为f(x−2)<0=f(−2),∵当x∈(0,+∞)时,f(x)为减函数,-16-\n∴函数f(x)在(−∞,0)上单调递减,∴−2<x−2<0,∴0<x<2.综上可得:不等式的解集为{x∣0<x<2或2<x<4}故选D.3.设函数f(x)的定义域为(-3,3),满足f(-x)=-f(x),且对任意x,y,都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2.(1)求f(2)的值;(2)判断f(x)的单调性,并证明;(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.【答案】(1)f(2)=-4;(2)见解析;(3)(0,2].(3)由g(x)≤0得f(x-1)+f(3-2x)≤0,所以f(x-1)≤-f(3-2x).又f(x)满足f(-x)=-f(x),-16-\n所以f(x-1)≤f(2x-3),又f(x)在(-3,3)上单调递减,所以解得0<x≤2,故不等式g(x)≤0的解集是(0,2].点睛:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中的易错点是容易忽视定义域(-3,3).4.【山东省寿光现代中学2022届高三上学期开学考试】已知fx是定义在-1,1上的奇函数,且f1=1,若a,b∈-1,1,a+b≠0时,有fa+fba+b>0成立.(1)判断fx在-1,1上的单调性,并证明它;(2)解不等式fx2<f2x.【答案】(1)fx是定义在-1,1上的增函数.(2)0,12【解析】【试题分析】(1)运用单调性的定义:任取x1、x2∈-1,1,且x1<x2,则fx1-fx2=fx1+f-x2,借助已知可得fx1+f-x2x1+-x2>0,即fx1-fx2x1-x2>0,由于x1-x2<0,所以fx1-fx2<0,则fx是-1,1上的增函数;(2)借助(1)的结论将不等式不等式fx2<f2x化为-1≤x2≤1-1≤2x≤1x2<2x,通过解不等式使得问题获解:(2)由(1)可得fx在-1,1递增,可得不等式fx2<f2x,即为-1≤x2≤1-1≤2x≤1x2<2x,即-16-\n-1≤x≤1-12≤x≤120<x<2,解得0<x≤12.则解集为0,12.点睛:本题旨在考查函数的奇偶性、单调性等基本性质及综合运用。求解第一问时,先运用单调性的定义任取x1、x2∈-1,1,且x1<x2,求差fx1-fx2=fx1+f-x2,借助已知可得fx1+f-x2x1+-x2>0,即确定fx1-fx2x1-x2>0,由于x1-x2<0,所以fx1-fx2<0,则fx是-1,1上的增函数;解答第二问时,先借助(1)的结论将不等式不等式fx2<f2x化为-1≤x2≤1-1≤2x≤1x2<2x,再通过解不等式组使得问题获解。5.设函数是定义在上的函数,并且满足下面三个条件:①对任意正数,都有;②当时,;③.(1)求,的值;(2)证明在上是减函数;(3)如果不等式成立,求的取值范围.【答案】(Ⅰ);(Ⅱ)见解析;(Ⅲ)).-16-\n(Ⅱ)∴∴在上为减函数.(Ⅲ)由条件(1)及(Ⅰ)的结果得:,其中,由(Ⅱ)得:,解得的范围是)点晴:本题属于对函数单调性的证明和单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.6.【河南省南阳市第一中学2022届高三第一次考试】设是定义域为-16-\n上的奇函数且在上为增函数.(1)若,,试判断的符号;(2)若,解关于的不等式.【答案】(1)(2)试题解析:解:(1)∵,,∴,一正一负.不妨设,,则.取,∵函数在上为增函数,则;取,同理,∴.又函数在上为奇函数,∴,∴.-16-\n7.【河南省郑州外国语学校2022届高三上学期第一次月考】已知函数f(x)的定义域关于原点对称,且满足以下三个条件:①x1、x2、x1-x2是定义域中的数时,有f(x1-x2)=f(x1)f(x2)+1f(x2)-f(x1);②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0.(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;(2)判断函数f(x)在(0,2a)上的单调性,并证明;(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,①求f(2a)的值;②求不等式f(x-4)<0的解集.【答案】(1)略(2)∴f(x)在(0,2a)上是增函数;-16-\n(3)f(2a)=f(a)f(-a)+1f(-a)-f(a)=1-f(a2)-2f(a)=0,不等式的解集是(4-4a,4-2a)∪(4,2a+4).8.已知函数是定义在上的增函数,对于任意的,都有,且满足.(1)求的值;(2)求满足的的取值范围.【答案】(1),;(2).【解析】试题分析:(1)根据已知条件,只需取,便可求出f(1);取,便可求出f(4).(2)根据已知条件可以得到:,根据已知的条件解这个不等式即可.试题解析:(1)取,得,则取,得,则(2)由题意,,故解得,点睛:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当-16-\n时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中的易错点是容易忽视定义域.9.定义在上的函数对任意的,满足条件:,且当时,.(1)求的值;(2)证明:函数是上的单调增函数;(3)解关于的不等式.【答案】(Ⅰ);(Ⅱ)见解析;(Ⅲ).【解析】试题分析:(1)因为定义在R上的函数,令令,可得.(2)抽象函数的单调性一般用定义证明,,只需判断与1的大小比较。(3)由(1)可知,所以不等式变形为f(0),又由(2)知是上的单调增函数,所以。(Ⅱ)证明:设,,则,由题意知,,所以,即,-16-\n所以函数是R上的单调增函数.(Ⅲ)解:由(Ⅰ)(Ⅱ)可知函数是R上的单调增函数,且,不等式,即,源:]故,解得.所以不等式的解集为.10.定义在上的函数对任意的,满足条件:,且当时,.(1)求的值;(2)证明:函数是上的单调增函数;(3)解关于的不等式.【答案】(Ⅰ).(Ⅱ)见解析;(Ⅲ).(Ⅱ)证明:设,,则,由题意知,,所以,-16-\n即,所以函数是R上的单调增函数.-16-