课时作业(三十) 数列的概念及简单表示法一、选择题1.数列,,,,…中,有序实数对(a,b)可以是( )A.(21,-5)B.(16,-1)C.D.答案:D解析:由数列中的项可观察规律,得5-3=10-8=17-(a+b)=(a-b)-24=2,则解得故应选D.2.(2015·山西长治4月)已知数列{an}满足a1=1,an+1=则其前6项之和为( )A.16B.20C.33D.120答案:C解析:a2=2a1=2,a3=a2+1=3,a4=2a3=6,a5=a4+1=7,a6=2a5=14,所以前6项和S6=1+2+3+6+7+14=33,故应C.3.数列{an}满足an+1=若a1=,则a2015等于( )A.B.C.D.答案:B解析:∵a1=<,∴a2=>,∴a3=,a4=,a5=,∴数列具有周期性,且周期为4,∴a2015=a3=,故应选C.4.(2015·北京东城一模)已知函数f(n)=n2cosnπ,且an=f(n)+f(n+1),则a1+a2+a3+…+a100=( )6\nA.0B.-100C.100D.10200答案:B解析:f(n)=n2cosnπ==(-1)n·n2,由an=f(n)+f(n+1)=(-1)n·n2+(-1)n+1·(n+1)2=(-1)n[n2-(n+1)2]=(-1)n+1·(2n+1),得a1+a2+a3+…+a100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.故应B.5.已知数列{an}的前n项和Sn=n2·an(n≥2),而a1=1,通过计算a2,a3,a4,猜想an等于( )A.B.C.D.答案:B解析:∵S2=22·a2,∴1+a2=4a2,∴a2=.∵S3=32·a3,∴1++a3=9a3,∴a3=.∵S4=42·a4,∴1+++a4=16a4,∴a4==.可见a1=,a2=,a3=,a4=,由此猜想an=.实际上,此题用a1=1代入各选项验证最简单.故应选B.6.数列{an}的通项公式为an=an2+n,若满足a1<a2<a3<a4<a5,且an>an+1对n≥8恒成立,则实数a的取值范围是( )A. B.6\nC.D.答案:D解析:可以把an看成是关于n的二次函数,根据其对称轴为n=-,易知对称轴应满足<-<,解得-<a<-.故应选D.二、填空题7.已知数列{an}中,a1=,an+1=1-(n≥2),则a16=________.答案:解析:由题意知,a2=1-=-1,a3=1-=2,a4=1-=,∴此数列是以3为周期的周期数列,a16=a3×5+1=a1=.8.已知数列{an}满足a1=1,a2=2,且an=(n≥3),则a2013=________.答案:2解析:将a1=1,a2=2代入an=,得a3==2,同理可得a4=1,a5=,a6=,a7=1,a8=2,故数列{an}是周期数列,周期为6,故a2013=a335×6+3=a3=2.9.已知{an}的前n项和为Sn,且满足log2(Sn+1)=n+1,则an=________.答案:解析:由已知条件,可得Sn+1=2n+1.则Sn=2n+1-1,当n=1时,a1=S1=3,当n≥2时,an=Sn-Sn-1=2n+1-1-2n+1=2n,n=1时不适合上式,故an=6\n10.对于正项数列{an},定义Hn=为{an}的“光阴”值,现知某数列的“光阴”值为Hn=,则数列{an}的通项公式为________.答案:an=,n∈N*解析:由Hn=,可得a1+2a2+3a3+…+nan==,①当n≥2时,a1+2a2+3a3+…+(n-1)an-1=,②①-②,得nan=-=,所以an=.又n=1时,由①可得a1=,也适合上式,所以数列{an}的通项公式为an=,n∈N*.三、解答题11.已知数列{an}中,a1=1,前n项和Sn=an.(1)求a2,a3;(2)求数列{an}的通项公式.解:(1)∵Sn=an,且a1=1,∴S2=a2,即a1+a2=a2,得a2=3.由S3=a3,得3(a1+a2+a3)=5a3,得a3=6.(2)由题设知a1=1.当n≥2时,有an=Sn-Sn-1=an-an-1,整理,得an=an-1,即=,6\n于是=3,=,=,…,=,以上n-1个式子的两端分别相乘,得=,∴an=,n≥2.又a1=1适合上式,故an=,n∈N*.12.已知数列{an}满足前n项和Sn=n2+1,数列{bn}满足bn=,且前n项和为Tn,设cn=T2n+1-Tn.(1)求数列{bn}的通项公式;(2)判断数列{cn}的增减性.解:(1)a1=2,an=Sn-Sn-1=2n-1(n≥2).∴bn=(2)∵cn=bn+1+bn+2+…+b2n+1=++…+,∴cn+1-cn=+-=<0,∴{cn}是递减数列.13.在数列{an},{bn}中,a1=2,an+1-an=6n+2,点在y=x3+mx的图象上,{bn}的最小项为b3.(1)求数列{an}的通项公式;(2)求m的取值范围.解:(1)∵an+1-an=6n+2,∴当n≥2时,an-an-1=6n-4.∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(6n-4)+(6n-10)+…+8+2=+2=3n2-3n+2n-2+2=3n2-n,6\n显然a1也满足an=3n2-n,∴an=3n2-n.(2)∵点在y=x3+mx的图象上,∴bn=(3n-1)3+m(3n-1).∴b1=8+2m,b2=125+5m,b3=512+8m,b4=1331+11m.∵{bn}的最小项是b3,∴∴-273≤m≤-129.∵bn+1=(3n+2)3+m(3n+2),bn=(3n-1)3+m(3n-1),∴bn+1-bn=3[(3n+2)2+(3n-1)2+(3n+2)(3n-1)]+3m=3(27n2+9n+3+m),当n≥4时,27n2+9n+3>273,∴27n2+9n+3+m>0,∴bn+1-bn>0,∴n≥4时,bn+1>bn.综上可知,-273≤m≤-129,∴m的取值范围为[-273,-129].6