备战2013高考数学(文)6年高考母题精解精析专题12概率02一、选择题:1.(2011年高考安徽卷文科9)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A)(B)(C)(D)2.(2011年高考海南卷文科6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【答案】A【解析】因为每位同学参加各个小组的可能性相等,所以所求概率为,选A.3.(2011年高考浙江卷文科8)从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是(A)(B)(C)(D)【答案】D【解析】:无白球的概率是,至少有1个白球的概率为,故选D-13-\n5.(2011年高考四川卷文科12)在集合中任取一个偶数a和一个奇数b构成以原点为起点的向量a=(a,b)从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作为平行四边形的个数为n,其中面积等于2的平行四边形的个数m,则=()(A)(B)(C)(D)二、填空题:6.(2011年高考江苏卷5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______【答案】【解析】从1,2,3,4这四个数中一次随机取两个数,所有可能的取法有6种,满足“其中一个数是另一个的两倍”的所有可能的结果有(1,2),(2,4)共2种取法,所以其中一个数是另一个的两倍的概率是.-13-\n7.(2011年高考湖南卷文科15)已知圆直线(1)圆的圆心到直线的距离为.(2)圆上任意一点到直线的距离小于2的概率为.答案:5,解析:(1)由点到直线的距离公式可得;(2)由(1)可知圆心到直线的距离为5,要使圆上点到直线的距离小于2,即与圆相交所得劣弧上,由半径为,圆心到直线的距离为3可知劣弧所对圆心角为,故所求概率为.8.(2011年高考湖北卷文科13)在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期的概率为(结果用最简分数表示)答案:解析:因为30瓶饮料中未过期饮料有30-3=27瓶,故其概率为.9.(2011年高考重庆卷文科14)从甲、乙等10位同学中任选3位去参加某项活动,则所选3位中有甲但没有乙的概率为【答案】三、解答题:9.(2011年高考山东卷文科18)(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.-13-\n10.(2011年高考天津卷文科15)(本小题满分13分)编号分别为的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8得分1535212825361834运动员编号A9A10A11A12A13A14A15A16得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格:区间人数(Ⅱ)从得分在区间内的运动员中随机抽取2人,(i)用运动员编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50的概率.-13-\n【命题意图】本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.11.(2011年高考江西卷文科16)(本小题满分12分)某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为及格.假设此人对A和B两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.12.(2011年高考湖南卷文科18)(本题满分12分)-13-\n某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(I)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率(II)假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.解:(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为降雨量70110140160200220频率(II)故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为.13.(2011年高考四川卷文科17)(本小题共12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率;(Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.-13-\n.所以甲、乙两人所付的租车费用之和小于6元的概率.14.(2011年高考陕西卷文科20)(本小题满分13分)如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下:(Ⅰ)试估计40分钟内不能赶到火车站的概率;时间(分钟)选择612181212选择0416164(Ⅱ )分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(Ⅲ )现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径。-13-\n15.(2011年高考广东卷文科17)(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:编号n12345成绩7076727072(1)求第6位同学成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间中的概率.【解析】-13-\n16.(2011年高考福建卷文科19)(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:x12345fa0.20.45bc1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;(11)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.-13-\n17.(2011年高考全国新课标卷文科19)(本小题满分12分)某种产品以其质量指标值衡量,质量指标越大越好,且质量指标值大于102的产品为优质产品,现在用两种新配方(A配方、B配方)做试验,各生产了100件,并测量了每件产品的质量指标值,得到下面的试验结果:A配方的频数分布表指标值分组频数82042228B配方的频数分布表指标值分组频数41242328(1)分别估计使用A配方,B配方生产的产品的优质品的概率;(2)已知用B配方生产一件产品的利润与其质量指标的关系为:-13-\n估计用B配方生产上述产品平均每件的利润。18.(2011年高考辽宁卷文科19)(本小题满分12分)某农场计划种植某种新作物.为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中.随机选n小块地种植品种甲,另外n小块地种植品种乙(Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:(Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x1,x2,…,xa的样本方差,其中为样本平均数。解析:(I)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”,从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)。而事件A包含1个基本事件:(1,2),所以P(A)=.-13-\n19.(2011年高考全国卷文科19)(本小题满分12分)(注意:在试题卷上作答无效)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率;(Ⅱ)求该地的3位车主中恰有一位车主甲、乙两种保险都不购买的概率。【解析】设该车主购买乙种保险的概率为,由题:,解得(Ⅰ)设所求概率为,则故该地1位车主至少购买甲、乙两种保险中的l种的概率为0.8.(Ⅱ)对每位车主甲、乙两种保险都不购买的概率为于是所求概率为:20.(2011年高考重庆卷文科17)(本小题满分13分,(I)小问6分,(II)小问7分)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(I)没有人申请A片区房源的概率;(II)每个片区的房源都有人申请的概率。解:这是等可能性事件的概率计算问题。-13-\n-13-