备战2013高考数学(文)6年高考母题精解精析专题10圆锥曲线0225.【2012高考山东文21】(本小题满分13分)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.-17-\n26.【2102高考福建文21】(本小题满分12分)如图,等边三角形OAB的边长为,且其三个顶点均在抛物线E:x2=2py(p>0)上。(1)求抛物线E的方程;-17-\n(1)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。【答案】27.【2012高考上海文22】(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分在平面直角坐标系中,已知双曲线(1)设是的左焦点,是右支上一点,若,求点的坐标;(2)过的左焦点作的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;-17-\n(3)设斜率为()的直线交于、两点,若与圆相切,求证:⊥【答案】-17-\n28.【2012高考新课标文20】(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(I)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【答案】-17-\n29.【2012高考浙江文22】本题满分14分)如图,在直角坐标系xOy中,点P(1,)到抛物线C:=2px(P>0)的准线的距离为。点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分。(1)求p,t的值。(2)求△ABP面积的最大值。-17-\n30.【2012高考湖南文21】(本小题满分13分)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.-17-\n -17-\n【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问根据条件设出椭圆方程,求出即得椭圆E的方程,第二问设出点P坐标,利用过P点的两条直线斜率之积为,得出关于点P坐标的一个方程,利用点P在椭圆上得出另一方程,联立两个方程得点P坐标.31.【2012高考湖北文21】(本小题满分14分)设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足当点A在圆上运动时,记点M的轨迹为曲线C。(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标。(2)过原点斜率为K的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的K>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由。21.【答案】-17-\n-17-\n【解析】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.33.【2012高考辽宁文20】(本小题满分12分)如图,动圆,1<t<3,与椭圆:相交于A,B,C,D四点,点分别为的左,右顶点。(Ⅰ)当t为何值时,矩形ABCD的面积取得最大值?并求出其最大面积;(Ⅱ)求直线AA1与直线A2B交点M的轨迹方程。【答案】-17-\n【解析】本题主要考查直线、圆、椭圆的方程,椭圆的几何性质,轨迹方程的求法,考查函数方程思想、转化思想、数形结合思想、运算求解能力和推理论证能力,难度较大。34.【2012高考江西文20】(本小题满分13分)已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足(1)求曲线C的方程;(2)点Q(x0,y0)(-2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,-1),l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比。【答案】【解析】-17-\n35.【2012高考四川文21】(本小题满分12分)如图,动点与两定点、构成,且直线的斜率之积为4,设动点的轨迹为。(Ⅰ)求轨迹的方程;(Ⅱ)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。【答案】【解析】-17-\n36.【2012高考重庆文21】本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)已知椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且△是面积为4的直角三角形。(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过作直线交椭圆于,,求△的面积【答案】(Ⅰ)+=1(Ⅱ)-17-\n-17-\n37.【2012高考陕西文20】(本小题满分13分)已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率。(1)求椭圆的方程;(2)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程。【答案】-17-\n-17-