2022高考数学真题分类汇编四、平面向量一、选择题1.(2022·全国乙(文)T3)已知向量,则()A.2B.3C.4D.5【答案】D【解析】【分析】先求得,然后求得.【详解】因为,所以.故选:D2.(2022·全国乙(理)T3)已知向量满足,则()A.B.C.1D.2【答案】C【解析】【分析】根据给定模长,利用向量的数量积运算求解即可.【详解】解:∵,又∵∴9,∴故选:C.3.(2022·新高考Ⅰ卷T3)在中,点D在边AB上,.记,则()A.B.C.D.【答案】B\n【解析】【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D在边AB上,,所以,即,所以.故选:B.4.(2022·新高考Ⅱ卷T4)已知,若,则()A.B.C.5D.6【答案】C【解析】【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解:,,即,解得,故选:C二、填空题1.(2022·全国甲(文)T13)已知向量.若,则______________.【答案】或【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:,解得.故答案为:.2.(2022·全国甲(理)T13)设向量,的夹角的余弦值为,且,,则_________.\n【答案】【解析】【分析】设与的夹角为,依题意可得,再根据数量积的定义求出,最后根据数量积的运算律计算可得.【详解】解:设与的夹角为,因为与的夹角的余弦值为,即,又,,所以,所以.故答案为:.