第九章第5课时古典概型课时闯关(含解析)1.在一次随机试验中,彼此互斥的事件A、B、C、D的概率分别是0.2、0.2、0.3、0.3,则下列说法正确的是( )A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件解析:选D.由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件,故其事件的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.2.某产品分甲、乙、丙三级,其中乙、丙均属于次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对成品抽查一件,恰好得正品的概率为( )A.0.99 B.0.98C.0.97D.0.96解析:选D.记事件A={甲级品},B={乙级品},C={丙级品}.事件A、B、C彼此互斥,且A与B∪C是对立事件.所以P(A)=1-P(B∪C)=1-P(B)-P(C)=1-0.03-0.01=0.96.3.对一批衬衣进行抽样检查,结果如表:抽取件数n50100200500600700800次品件数m021227273540次品率(1)求次品出现的频率;(2)记“任取一件衬衣是次品”为事件A,求P(A);(3)为了保证买到次品的顾客能够及时更换,则销售1000件衬衣,至少需进货多少件?解:(1)次品率依次为:0,0.02,0.06,0.054,0.045,0.05,0.05.(2)由(1)知,出现次品的频率在0.05附近摆动,故P(A)=0.05.(3)设进衬衣x件,则x(1-0.05)≥1000,x∈N*,解得x≥1053.故至少需进货1053件.1