吉林省长白山二中2022-2022学年高一数学上学期期中试题注:考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.全集U={0,-1,-2,-3,-4},M={0,-1,-2},N={0,-3,-4},则(∁UM)∩N为( )A.{0} B.{-3,-4}C.{-1,-2}D.∅2.用分数指数幂表示,正确的是( )A.aB.aC.aD.a3.函数y=+log2(x+3)的定义域是( )A.RB.(-3,+∞)C.(-∞,-3)D.(-3,0)∪(0,+∞)4.在区间(0,1)上,图像在y=x的下方的函数为( )A.y=logxB.y=2xC.y=x3D.y=x5.函数f(x)=ax-3+4(a>0且a≠1)的图像恒过定点( )A.(3,4)B.(0,1)C.(0,5)D.(3,5)6.已知函数f(x)=若f(a)=3,则a的取值个数是( )A.1B.2C.3D.47.已知函数f(x)=(m-1)x2+2mx+3是偶函数,则f(x)在(-5,-2)上是( )A.增函数B.减函数C.不具有单调性D.单调性由m确定8.若在二次函数y=ax2+bx+c中,a·c<0,则函数的零点个数是( )A.1B.2C.0D.无法确定9.三个数0.32,20.3,log0.32的大小关系为( )A.log0.32<0.32<20.3B.log0.32<20.3<0.32C.0.32<log0.32<20.3D.0.32<20.3<log0.3210.已知偶函数f(x)在(-∞,-2]上是增函数,则下列关系式中成立的是( )A.f(-)<f(-3)<f(4)B.f(-3)<f(-)<f(4)C.f(4)<f(-3)<f(-)D.f(4)<f(-)<f(-3)11.若函数对任意实数x都有f(2+x)=f(2-x),那么( )A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)-6-\n12.若f(x)和g(x)都是奇函数,且F(x)=f(x)+g(x)+2,在(0,+∞)上有最大值8,则在(-∞,0)上F(x)有( )A.最小值-8B.最大值-8C.最小值-6D.最小值-4二、填空题(本大题共4小题,每小题5分,共20分.把答案填在横线上)13.已知集合,那么为__14.已知集合A=至多有一个元素,则a的取值范围是________.15.已知偶函数在区间单调递增,则满足,则x取值范围是________.16.若函数f(x)=lg(+1)+ax是偶函数,g(x)=是奇函数,则a+b的值是__________.三、解答题(本大题共6小题,共70分)17.(10分)已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.(1)求A∪B,(∁RA)∩B;(2)若A∩C≠∅,求a的取值范围.18.(12分)计算下列各式.(1)|1+lg0.001|++lg6-lg0.03;(2)(0.001)+(27)-()+19.(12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.20.(本小题满分12分)已知函数,(1)若a=2,求在区间上的最小值;(2)若在区间上有最大值3,求实数的值.-6-\n21.(12分)已知f(x)是定义在(0,+∞)上的增函数,且f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)+f()≤2.22.(12分)已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=.(1)求实数m,n的值;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解关于t的不等式f(t-1)+f(t)<0.-6-\n答案-6-\n-6-\n-6-