2022-2022学年江苏省泰州中学高三(上)期中物理试卷 一、单向选择题(共7小题,每小题3分,共21分,在每小题给出的四个选项中,只有一个选项正确,选对的得3分,选错或不答的得0分)1.某中学生身高1.7m,在学校运动会上参加跳高比赛,采用背跃式,身体横着越过2.10m的横杆,获得了冠军.据此可估算出他起跳时竖直向上的速度约为(g=10m/s2)( )A.7m/sB.6.5m/sC.5m/sD.3m/s 2.如图所示,在地面上以速度v0抛出质量为m的物体,抛出后物体落到比地面低h的海平面上.若以地面为零势能面而且不计空气阻力,则以下说法正确的是( )①物体落到海平面时的势能为mgh②重力对物体做的功为mgh③物体在海平面上的动能为mv02+mgh④物体在海平面上的机械能为mv02.A.①②③B.②③④C.①③④D.①②④ 3.如图所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,且a与c关于MN对称,b点位于MN上,d点位于两电荷的连线上.以下判断正确的是( )A.b点场强小于d点场强B.b点电势高于d点电势C.试探电荷+q在a点的电势能小于在c点的电势能D.a、b两点的电势差等于b、c两点间的电势差 4.从距地面h高度水平抛出一小球,落地时速度方向与水平方向的夹角为θ.不计空气阻力,重力加速度为g,下列结论中正确的是( )23\nA.小球初速度为•tanθB.小球着地速度大小为C.若小球初速度减为原来一半,则平抛运动的时间变为原来两倍D.若小球初速度减为原来一半,则落地时速度方向与水平方向的夹角变为2θ 5.北京时间2022年3月31日,中国在西昌卫星发射中心用“长征三号乙”运载火箭,将法国制造的“亚太7号”通信卫星成功送入近地点209km、远地点50419km的预定转移轨道,卫星在此轨道上运行一段时间后再经变轨成为一颗地球同步卫星,同步卫星轨道离地面高度为35860km.下列说法正确的是( )A.卫星在转移轨道运动的周期大于在同步轨道上运行的周期B.卫星在转移轨道运动时,经过近地点时的速率大于它在远地点的速率C.卫星在同步轨道运动时,飞船内的航天员处于超重状态D.卫星在同步轨道运动时的向心加速度小于静止于赤道上物体的向心加速度 6.在上海世博会最佳实践区,江苏城市案例馆中穹形门窗充满了浓郁的地域风情和人文特色.如图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过轻质滑轮悬挂一重物G.现将轻绳的一端固定于支架上的A点,另一端从B点沿支架缓慢地向C点靠近(C点与A点等高).则绳中拉力大小变化的情况是( )A.先变大后不变B.先变小后不变C.先变小后变大D.先变大后变小 7.游乐场内的新型滑梯可以简化为如图所示物理模型.一个小朋友从A点开始下滑,滑到C点时速度恰好减为0,整个过程中滑梯保持静止状态.若AB段的动摩擦因数μ1小于BC段的动摩擦因数μ2,则该小朋友从斜面顶端A点滑到底端C点的过程中( )A.小朋友在AB段的平均速度等于BC段的平均速度B.小朋友在AB段和BC段合外力所做的功相同C.地面对滑梯的摩擦力方向始终水平向左D.地面对滑梯的支持力大小始终等于小朋友和滑梯的总重力大小 二、多项选择题:本题共5小题,每小题4分,共20分,在每小题给出的四个选项中,至少有两个选择正确,全部选对的得4分,选不全的得2分,有选错或不答的得0分8.一质点在XOY平面内运动的轨迹如图所示,下列判断正确的是( )23\nA.质点沿X方向可能做匀速运动B.质点沿Y方向可能做变速运动C.若质点沿Y方向始终匀速运动,则X方向可能先加速后减速D.若质点沿Y方向始终匀速运动,则X方向可能先减速后加速 9.如图所示,内壁光滑的半球形容器固定放置.两个完全相同的小球a、b分别沿容器内壁,在不同的水平面内做匀速圆周运动.下列判断正确的是( )A.a对内壁的压力小于b对内壁的压力B.a的周期小于b的周期C.a的角速度小于b的角速度D.a的向心加速度大小大于b的向心加速度大小 10.如图a所示,A,B为某电场中一条直线上的两个点,现将一正点电荷由A点静止释放,仅在电场力作用下运动一段距离到达B点,其电势能Ep随位移x的变化关系如图b所示,则该点电荷从A到B的过程中,下列说法正确的是( )A.电场力对电荷先做正功后做负功B.电势一直升高C.电荷所受电场力先减小后增大D.电荷所受电场力先增大后减小 11.如图所示,一滑块从底端冲上固定的足够长粗糙斜面,到达某一高度后返回.下列各图分别表示滑块在斜面上运动的位移s、速度v、加速度a、机械能EK随时间变化的图象,可能正确的是( )23\n 12.如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是( )A.斜面倾角α=30°B.A获得最大速度为2gC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒 三、实验题:本题共2小题,每空2分,共16分13.某同学利用电磁打点计时器打出的纸带来验证机械能守恒定律,该同学在实验中得到一条纸带,如图所示,在纸带上取6个计数点,两个相邻计数点间的时间间隔为T=0.02s.其中1、2、3点相邻,4、5、6点相邻,在3点和4点之间还有若干个点.s1是1、3两点的距离,s2是2、5两点的距离,s3是4、6两点的距离.23\n(1)实验过程中,下列操作正确的是 .A.电磁打点计时器应接在220V交流电源上B.实验时应先松开纸带,然后迅速打开打点计时器C.实验时应先打开打点计时器,然后松开纸带D.纸带应理顺,穿过限位孔并保持竖直(2)点2速度的表达式v2= (3)该同学测得的数据是s1=4.00cm,s2=16.00cm,s3=8.00cm,重物(质量为m)从点2运动到点5过程中,动能增加量为 m,势能减少量为 m.(结果保留两位有效数字,重力加速度g=10m/s2) 14.为了测量木块与木板间动摩擦因数μ,某小组使用位移传感器设计了如图1所示实验装置,让木块从倾斜木板上一点A由静止释放,位移传感器可以测出木块到传感器的距离.位移传感器连接计算机,描绘出滑块相对传感器的位移x随时间t变化规律,如图2所示.(1)根据上述图线,计算0.4s时木块的速度v= m/s,木块加速度a= m/s2;(2)为了测定动摩擦因数μ,还需要测量的量是 ;(已知当地的重力加速度g)(3)为了提高木块与木板间动摩擦因数μ的测量精度,下列措施可行的是 A.A点与传感器距离适当大些B.木板的倾角越大越好C.选择体积较大的空心木块D.传感器开始计时的时刻必须是木块从A点释放的时刻. 四、计算或论述题,本题共4小题,共63分,把答案填在答题卡上,解答时请写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位23\n15.(15分)(2022•惠州三模)在游乐场中,有一种大型游戏机叫“跳楼机”.参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40m高处,然后由静止释放.为研究方便,可以认为座椅沿轨道做自由落体运动1.2s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10m/s2)求:(1)座椅在自由下落结束时刻的速度是多大?(2)座椅在匀减速阶段的时间是多少?(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍? 16.(16分)(2022•乐山一模)一长为L的细线,上端固定,下端拴一质量为m、带电荷量为q的小球,处于如图所示的水平向右的匀强电场中,开始时,将线与小球拉成水平,然后释放小球由静止开始向下摆动,当细线转过60°角时,小球到达B点速度恰好为零.试求:(1)AB两点的电势差UAB;(2)匀强电场的场强大小;(3)小球到达B点时,细线对小球的拉力大小. 17.(16分)(2022•宿迁模拟)如图所示,一物体M从A点以某一初速度沿倾角α=37°的粗糙固定斜面向上运动,自顶端B点飞出后,垂直撞到高H=2.25m的竖直墙面上C点,又沿原轨迹返回.已知B、C两点的高度差h=0.45m,物体M与斜面间的动摩擦因数μ=0.25,取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.试求:(1)物体M沿斜面向上运动时的加速度大小;(2)物体返回后B点时的速度;(3)物体被墙面弹回后,从B点回到A点所需的时间.23\n 18.(16分)(2022•蓟县校级模拟)如图,传送带AB总长为l=10m,与一个半径为R=0.4m的光滑圆轨道BC相切于B点.传送带速度恒为v=6m/s,方向向右.现有一个滑块以一定初速度v0从A点水平冲上传送带,滑块质量为m=10kg,滑块与传送带间的动摩擦因数为μ=0.1.已知滑块运动到B端时,刚好与传送带共速.求(1)v0;(2)滑块能上升的最大高度h;(3)求滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能. 2022-2022学年江苏省泰州中学高三(上)期中物理试卷参考答案与试题解析 一、单向选择题(共7小题,每小题3分,共21分,在每小题给出的四个选项中,只有一个选项正确,选对的得3分,选错或不答的得0分)1.某中学生身高1.7m,在学校运动会上参加跳高比赛,采用背跃式,身体横着越过2.10m的横杆,获得了冠军.据此可估算出他起跳时竖直向上的速度约为(g=10m/s2)( )A.7m/sB.6.5m/sC.5m/sD.3m/s【考点】竖直上抛运动.【专题】直线运动规律专题.【分析】运动员跳高的运动模型为竖直上抛运动,因为是背跃式跳高,所以只要运动员的重心能够达到横杆处,即可认为运动员越过横杆.【解答】解:运动员跳高过程可以看做竖直上抛运动,当重心达到横杆时速度恰好为零,有:运动员重心升高高度:.根据竖直上抛运动得:,故ABD错误,C正确.故选C.【点评】对于生活中的各种实际运动要能正确建立运动模型,然后依据运动规律求解. 2.如图所示,在地面上以速度v0抛出质量为m的物体,抛出后物体落到比地面低h的海平面上.若以地面为零势能面而且不计空气阻力,则以下说法正确的是( )①物体落到海平面时的势能为mgh②重力对物体做的功为mgh③物体在海平面上的动能为mv02+mgh23\n④物体在海平面上的机械能为mv02.A.①②③B.②③④C.①③④D.①②④【考点】机械能守恒定律;功的计算;重力势能.【专题】机械能守恒定律应用专题.【分析】整个过程不计空气阻力,只有重力对物体做功,机械能守恒,应用机械能守恒和功能关系可判断各选项的对错.【解答】解:①以地面为零势能面,海平面低于地面h,所以物体在海平面上时的重力势能为﹣mgh,故①错误.②重力做功与路径无关,只与始末位置的高度差有关,抛出点与海平面的高度差为h,并且重力做正功,所以整个过程重力对物体做功为mgh,故②正确.③由动能定理得:mgh=Ek2﹣mv02,物体在海平面上的动能为:Ek2=mv02+mgh,故③正确.④整个过程机械能守恒,即初末状态的机械能相等,以地面为零势能面,抛出时的机械能为mv02,所以物体在海平面时的机械能也为mv02,故④正确.故选:B.【点评】此题考查重力势能、重力做功、动能定理和机械能守恒,动能定理揭示了外力对物体所做总功与物体动能变化之间的关系,它描述了力在空间的积累效果,力做正功,物体的动能增加,力做负功,动能减少.动能定理解决的问题不受运动形式和受力情况的限制.还有就是重力势能的变化与零势能面的选取无关. 3.如图所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,且a与c关于MN对称,b点位于MN上,d点位于两电荷的连线上.以下判断正确的是( )A.b点场强小于d点场强B.b点电势高于d点电势C.试探电荷+q在a点的电势能小于在c点的电势能D.a、b两点的电势差等于b、c两点间的电势差23\n【考点】电场的叠加;电场强度;电势差.【专题】电场力与电势的性质专题.【分析】据等量异号电荷的电场分布特点可知各点的场强大小,由电场线性质及电场的对称性可知ab及bc两点间的电势差;由电势能的定义可知ac两点电势能的大小.【解答】解:A:在两等量异号电荷连线上,中间点电场强度最小;在两等量异号电荷连线的中垂线上,中间点电场强度最大;所以b点场强小于d点场强,选项A正确;B:MN是一条等势线,与在两等量异号电荷连线上的点相比较,d点的电势要高,所以b点电势低于d点电势,选项B错误;C:因a点的电势高于c点的电势,故试探电荷+q在a点的电势能大于在c点的电势能,选项C错误;D:由对称性可知,a、b两点的电势差等于b、c两点间的电势差,故选项D正确.故选:AD.【点评】该题考查常见电场的电场线分布及等势面的分布,要求我们能熟练掌握并要注意沿电场线的方向电势是降低的,同时注意等量异号电荷形成电场的对称性. 4.从距地面h高度水平抛出一小球,落地时速度方向与水平方向的夹角为θ.不计空气阻力,重力加速度为g,下列结论中正确的是( )A.小球初速度为•tanθB.小球着地速度大小为C.若小球初速度减为原来一半,则平抛运动的时间变为原来两倍D.若小球初速度减为原来一半,则落地时速度方向与水平方向的夹角变为2θ【考点】平抛运动.【专题】平抛运动专题.【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据高度求出落地的竖直分速度,结合平行四边形定则求出小球的初速度和着地的速度.平抛运动的时间由高度决定,与初速度无关.【解答】解:A、小球在竖直方向上的分速度,根据平行四边形定则知,小球的初速度.故A错误.B、根据平行四边形定则得,小球着地的速度大小v=.故B正确.C、平抛运动的时间由高度决定,与初速度无关,初速度减半,运动时间不变.故C错误.D、根据平行四边形定则知,tan,当初速度减半时,设落地的速度与水平方向的夹角为α,则tan,但是α≠2θ.故D错误.故选:B.【点评】解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律,知道平抛运动的时间由高度决定,与初速度无关,结合平行四边形定则进行求解. 23\n5.北京时间2022年3月31日,中国在西昌卫星发射中心用“长征三号乙”运载火箭,将法国制造的“亚太7号”通信卫星成功送入近地点209km、远地点50419km的预定转移轨道,卫星在此轨道上运行一段时间后再经变轨成为一颗地球同步卫星,同步卫星轨道离地面高度为35860km.下列说法正确的是( )A.卫星在转移轨道运动的周期大于在同步轨道上运行的周期B.卫星在转移轨道运动时,经过近地点时的速率大于它在远地点的速率C.卫星在同步轨道运动时,飞船内的航天员处于超重状态D.卫星在同步轨道运动时的向心加速度小于静止于赤道上物体的向心加速度【考点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.【专题】人造卫星问题.【分析】根据开普勒行星运动定律由轨道半长轴大小确定周期关系,据能量守恒确定在远地点和近地点的速率大小问题,据同步卫星周期与轨道半径确定向心加速度的大小,根据超失重条件判定是超重还是失重.【解答】解:A、转移轨道的半长轴小于同步卫星的轨道半径,故转移轨道上卫星的周期小于同步卫星的周期,故A错误;B、卫星从远地点向近地点运动时,只有引力做功,卫星的动能增加,故近地点的速率大于远地点的速率,故B正确;C、卫星在同步轨道上运行时,万有引力完全提供卫星圆周运动的向心力,故卫星内的宇航员处于完全失重状态,故C错误;D、同步卫星的周期与地球自转的周期相同,同步卫星的轨道半径远大于地球半径,据a=知,同步卫星的向心加速度远大于静止在赤道上物体的向心加速度,故D错误.故选:B.【点评】解决本题的关键是掌握开普勒行星运动定律,能从能量角度分析卫星的运动速率的大小,知道超失重的条件.本题有一定的综合性. 6.在上海世博会最佳实践区,江苏城市案例馆中穹形门窗充满了浓郁的地域风情和人文特色.如图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过轻质滑轮悬挂一重物G.现将轻绳的一端固定于支架上的A点,另一端从B点沿支架缓慢地向C点靠近(C点与A点等高).则绳中拉力大小变化的情况是( )A.先变大后不变B.先变小后不变C.先变小后变大D.先变大后变小【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【专题】共点力作用下物体平衡专题.【分析】23\n当轻绳的右端从B点移到直杆最上端时,两绳的夹角增大.滑轮两侧绳子的拉力大小相等,方向关于竖直方向对称.以滑轮为研究对象,根据平衡条件研究绳的拉力变化情况.当轻绳的右端从直杆的最上端移到C点的过程中,根据几何知识分析得到滑轮两侧绳子的夹角不变,由平衡条件判断出绳子的拉力保持不变.【解答】解:当轻绳的右端从B点移到直杆最上端时,设两绳的夹角为2θ.以滑轮为研究对象,分析受力情况,作出力图如图1所示.根据平衡条件得2Fcosθ=mg得到绳子的拉力F=所以在轻绳的右端从B点移到直杆最上端时的过程中,θ增大,cosθ减小,则F变大.当轻绳的右端从直杆最上端移到C点时,设两绳的夹角为2α.设绳子总长为L,两直杆间的距离为S,由数学知识得到sinα=,L、S不变,则α保持不变.再根据平衡条件可知,两绳的拉力F保持不变.所以绳中拉力大小变化的情况是先变大后不变.故选:A.【点评】本题是共点力平衡中动态变化分析问题,关键在于运用几何知识分析α的变化,这在高考中曾经出现过,有一定的难度. 7.游乐场内的新型滑梯可以简化为如图所示物理模型.一个小朋友从A点开始下滑,滑到C点时速度恰好减为0,整个过程中滑梯保持静止状态.若AB段的动摩擦因数μ1小于BC段的动摩擦因数μ2,则该小朋友从斜面顶端A点滑到底端C点的过程中( )A.小朋友在AB段的平均速度等于BC段的平均速度B.小朋友在AB段和BC段合外力所做的功相同C.地面对滑梯的摩擦力方向始终水平向左D.地面对滑梯的支持力大小始终等于小朋友和滑梯的总重力大小【考点】功能关系;功的计算.【分析】由题意可知,小朋友在AB段做匀加速直线运动,加速度沿斜面向下;在BC段做匀减速直线运动,加速度沿斜面向上.以小朋友和滑梯整体为研究对象,将小朋友的加速度分解为水平和竖直两个方向,由牛顿第二定律分析地面对滑梯的摩擦力方向和支持力的大小.23\n【解答】解:A、根据平均速度的公式,设B点的速度为v,则AB段和BC段的平均速度都为,故A正确;B、AB段小朋友加速运动,则mgsinθ>μ1mgcosθ,BC段小朋友做减速运动,则mgsinθ<μ2mgcosθ,所以μ1<μ2.小孩受到的摩擦力不同,则摩擦力做的功不相等,所以在AB段和BC段合外力所做的功不相同.故B错误;C、小朋友在AB段做匀加速直线运动,将小朋友的加速度a1分解为水平和竖直两个方向,如图1.以小朋友和滑梯整体为研究对象,由于小朋友有水平向左的分加速度,根据牛顿第二定律得知,地面对滑梯的摩擦力方向先水平向左.同理可知,小朋友在BC段做匀减速直线运动时,地面对滑梯的摩擦力方向水平向右.故C错误.D、以小朋友和滑梯整体为研究对象,小朋友在AB段做匀加速直线运动时,有竖直向下的分加速度,则由牛顿第二定律分析得知地面对滑梯的支持力FN小于小朋友和滑梯的总重力.同理,小朋友在BC段做匀减速直线运动时,地面对滑梯的支持力大于小朋友和滑梯的总重力.故D错误.故选:A.【点评】本题对加速度不同的两个运用整体法处理,在中学阶段应用得不多,也可以采用隔离法研究. 二、多项选择题:本题共5小题,每小题4分,共20分,在每小题给出的四个选项中,至少有两个选择正确,全部选对的得4分,选不全的得2分,有选错或不答的得0分8.一质点在XOY平面内运动的轨迹如图所示,下列判断正确的是( )A.质点沿X方向可能做匀速运动B.质点沿Y方向可能做变速运动C.若质点沿Y方向始终匀速运动,则X方向可能先加速后减速D.若质点沿Y方向始终匀速运动,则X方向可能先减速后加速【考点】匀变速直线运动的图像.【专题】运动学中的图像专题.【分析】物体做曲线运动,合力大致指向轨迹弯曲的内侧,则加速度大致指向轨迹凹的一侧.根据轨迹弯曲判断加速度的方向.23\n【解答】解:A、物体做曲线运动,合力大致指向轨迹凹的一侧,则加速度大致指向轨迹凹的一侧,由图可知:加速度方向指向弧内,不能沿y轴方向,x轴方向有分加速度,所以x轴方向不可能匀速,y方向可能有分加速度,故质点沿Y方向可能做变速运动.故A错误,B正确.C、物体在x方向先沿正方向运动,后沿负方向运动,最终在x轴方向上的位移为零,所以x方向不能一直加速运动,也不能先加速后减速,只能X方向可能先减速后反向加速,故C错误,D正确.故选BD【点评】解决本题得关键知道在曲线运动中,合力大致指向轨迹凹的一侧,会根据轨迹弯曲判断加速度的方向. 9.如图所示,内壁光滑的半球形容器固定放置.两个完全相同的小球a、b分别沿容器内壁,在不同的水平面内做匀速圆周运动.下列判断正确的是( )A.a对内壁的压力小于b对内壁的压力B.a的周期小于b的周期C.a的角速度小于b的角速度D.a的向心加速度大小大于b的向心加速度大小【考点】向心力;牛顿第二定律.【专题】牛顿第二定律在圆周运动中的应用.【分析】以任意一球为研究对象,根据牛顿第二定律得出角速度、周期、向心加速度和小球所受支持力的表达式,再比较其大小.【解答】解:A、以任意一球为研究对象,受力情况如图,由图得到轨道对小球的支持力N=,对于两球θa>θb,所以Na>Nb,故A错误;B、小球受重力mg和内壁的支持力N,由两力合力提供向心力,根据牛顿第二定律得:mgtanθ=mω2r,得:ω=,设球的半径为R,根据几何关系可知,运动半径r=Rsinθ,则ω=,对于两球θa>θb,则ωa>ωb,周期T=,所以Ta<Tb,故B正确,C错误;D、向心加速度an=gtanθ,对于两球θa>θb,则向心加速度aa>ab.故D正确.故选:BD23\n【点评】分析受力情况,确定小球向心力的来源,再由牛顿第二定律和圆周运动结合进行分析,是常用的方法和思路. 10.如图a所示,A,B为某电场中一条直线上的两个点,现将一正点电荷由A点静止释放,仅在电场力作用下运动一段距离到达B点,其电势能Ep随位移x的变化关系如图b所示,则该点电荷从A到B的过程中,下列说法正确的是( )A.电场力对电荷先做正功后做负功B.电势一直升高C.电荷所受电场力先减小后增大D.电荷所受电场力先增大后减小【考点】电势能.【分析】根据题意和图象正确判断出电子的运动形式是解题的关键,由图可知,正电荷通过相同位移时,电势能的减小量越来越小,说明电场力做功越来越小,由W=Fs可知电场力逐渐减小,因此正电荷做加速度逐渐减小的加速运动,知道了电荷的运动形式即可解正确解答本题.【解答】解:A、由图知,正电荷的电势能先减小后增大,则电场力先做正功后做负功.故A正确.B、正电荷从A到B仅在电场力作用下,电场力先做正功,后做负功,则说明电场线方向先向右,后向左,所以电势先降低后升高.故B错误.C、电势能EP随位移x的变化关系图象的斜率表示电场力的大小,因此电场力先减小后增大.故C正确,D错误.故选:AC.【点评】解题过程中要把握问题的核心,要找准突破点,如本题中根据图象获取有关电荷的运动情况、受力情况即为本题的突破点. 11.如图所示,一滑块从底端冲上固定的足够长粗糙斜面,到达某一高度后返回.下列各图分别表示滑块在斜面上运动的位移s、速度v、加速度a、机械能EK随时间变化的图象,可能正确的是( )23\n【考点】匀变速直线运动的图像.【专题】运动学中的图像专题.【分析】滑块在斜面上运动过程中,先上滑后下滑,由于存在摩擦力,上滑与下滑过程不再具有对称性,经过同一点时下滑的速度小于上滑的速度,上滑运动的时间较短.写出s与t的关系式,分析位移图象.根据牛顿第二定律分析上滑与下滑过程的加速度大小关系.根据功能关系分析EK与t的关系.【解答】解:A、在上滑过程中:上滑的位移大小为:s1=v0t﹣a1t2,s﹣t图象为抛物线.同理可得下滑过程的s﹣t图象也是抛物线,故A错误.B、滑块在斜面上运动过程中,由于存在摩擦力,机械能不断减小,经过同一点时下滑的速度小于上滑的速度,回到出发点时的速度比出发时的初速度小,上滑运动的时间较短.故B正确.C、设斜面的倾角为α.物体在上滑与下滑两个过程中,所受的合力方向均沿斜面向下,加速度方向相同.设上滑与下滑两个过程加速度大小分别为a1和a2.根据牛顿第二定律得:mgsinα+μmgcosα=ma1;mgsinα﹣μmgcosα=ma2;则得:a1=gsinα+μgcosα,a2=gsinα﹣μgcosα.则有:a1>a2.故C正确.D、由于物体克服摩擦力做功,其机械能不断减小,根据功能关系得:EK=E0﹣f1x=E0﹣f1•(v0t﹣a1t2),可知E﹣t图象应为抛物线.故D错误.故选:BD【点评】本题采用定性分析与定量计算相结合的方法分析功能关系、运动与力关系,根据物理规律得到解析式,再选择物理图象. 12.如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是( )23\nA.斜面倾角α=30°B.A获得最大速度为2gC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒【考点】机械能守恒定律;胡克定律;牛顿第二定律.【专题】机械能守恒定律应用专题.【分析】(1)C刚离开地面时,弹簧的弹力等于C的重力,根据牛顿第二定律知B的加速度为零,B、C加速度相同,分别对B、A受力分析,列出平衡方程,求出斜面的倾角.(2)A、B、C组成的系统机械能守恒,初始位置弹簧处于压缩状态,当B具有最大速度时,弹簧处于伸长状态,根据受力知,压缩量与伸长量相等.在整个过程中弹性势能变化为零,根据系统机械能守恒求出B的最大速度,A的最大速度与B相等;【解答】解:A、A刚离开地面时,对A有:kx2=mg此时B有最大速度,即aB=aC=0则对B有:T﹣kx2﹣mg=0对A有:4mgsinα﹣T=0以上方程联立可解得:sinα=,α=30°故A正确;B、初始系统静止,且线上无拉力,对B有:kx1=mg由上问知x1=x2=,则从释放至A刚离开地面过程中,弹性势能变化量为零;此过程中A、B、C组成的系统机械能守恒,即:4mg(x1+x2)sinα=mg(x1+x2)+(4m+m)vBm2以上方程联立可解得:vBm=2g所以A获得最大速度为2g,故B正确;C、对B球进行受力分析可知,刚释放A时,B所受合力最大,此时B具有最大加速度,故C错误;D、从释放A到C刚离开地面的过程中,A、B、C及弹簧组成的系统机械能守恒,故D错误.故选AB【点评】本题关键是对三个物体分别受力分析,得出物体B速度最大时各个物体都受力平衡,然后根据平衡条件分析;同时要注意是那个系统机械能守恒. 三、实验题:本题共2小题,每空2分,共16分23\n13.某同学利用电磁打点计时器打出的纸带来验证机械能守恒定律,该同学在实验中得到一条纸带,如图所示,在纸带上取6个计数点,两个相邻计数点间的时间间隔为T=0.02s.其中1、2、3点相邻,4、5、6点相邻,在3点和4点之间还有若干个点.s1是1、3两点的距离,s2是2、5两点的距离,s3是4、6两点的距离.(1)实验过程中,下列操作正确的是 CD .A.电磁打点计时器应接在220V交流电源上B.实验时应先松开纸带,然后迅速打开打点计时器C.实验时应先打开打点计时器,然后松开纸带D.纸带应理顺,穿过限位孔并保持竖直(2)点2速度的表达式v2= (3)该同学测得的数据是s1=4.00cm,s2=16.00cm,s3=8.00cm,重物(质量为m)从点2运动到点5过程中,动能增加量为 1.5 m,势能减少量为 1.6 m.(结果保留两位有效数字,重力加速度g=10m/s2)【考点】验证机械能守恒定律.【专题】实验题;机械能守恒定律应用专题.【分析】(1)电磁打点计时器应接在4﹣6V的交流电源上,实验时应先接通电源,再释放纸带.(2)根据某段时间内的平均速度等于中间时刻的瞬时速度求出点2的瞬时速度.(3)根据平均速度的推论分别求出点2、点5的瞬时速度,从而求出动能的增加量,根据下降的高度求出重力势能的减小量.【解答】解:(1)A、电磁打点计时器解4﹣6V的交流电源.故A错误.B、实验时应先接通电源,再松开纸带.故B错误,C正确.D、为了减小阻力,纸带应理顺,穿过限位孔并保持竖直.故D正确.故选CD.(2)某段时间内的平均速度等于中间时刻的瞬时速度,则.(3)点2的瞬时速度,点5的瞬时速度,则动能的增加量=.重力势能的减小量△Ep=mgx2=1.6mJ.故答案为:(1)CD(2)(3)1.5,1.6.【点评】解决本题的关键掌握实验的原理,以及实验注意的事项,知道误差形成的原因. 23\n14.为了测量木块与木板间动摩擦因数μ,某小组使用位移传感器设计了如图1所示实验装置,让木块从倾斜木板上一点A由静止释放,位移传感器可以测出木块到传感器的距离.位移传感器连接计算机,描绘出滑块相对传感器的位移x随时间t变化规律,如图2所示.(1)根据上述图线,计算0.4s时木块的速度v= 0.4 m/s,木块加速度a= 1 m/s2;(2)为了测定动摩擦因数μ,还需要测量的量是 斜面的倾角 ;(已知当地的重力加速度g)(3)为了提高木块与木板间动摩擦因数μ的测量精度,下列措施可行的是 A A.A点与传感器距离适当大些B.木板的倾角越大越好C.选择体积较大的空心木块D.传感器开始计时的时刻必须是木块从A点释放的时刻.【考点】探究影响摩擦力的大小的因素.【专题】实验题;摩擦力专题.【分析】(1)由于滑块在斜面上做匀加速直线运动,所以某段时间内的平均速度等于这段时间内中点时刻的瞬时速度;根据加速度的定义式即可求出加速度;(2)为了测定动摩擦力因数μ还需要测量的量是木板的倾角θ;(3)为了提高木块与木板间摩擦力因数μ的测量精度,可行的措施是A点与传感器位移适当大些或减小斜面的倾角.【解答】解:(1)根据某段时间内的平均速度等于这段时间内中点时刻的瞬时速度,得0.4s末的速度为:v=,0.2s末的速度为:,则木块的加速度为:a=.(2)选取木块为研究的对象,木块沿斜面方向是受力:ma=mgsinθ﹣μmgcosθ得:所以要测定摩擦因数,还需要测出斜面的倾角θ(3)根据(2)的分析可知,在实验中,为了减少实验误差,应使木块的运动时间长一些,可以:可以减小斜面的倾角、增加木块在斜面上滑行的位移等,传感器开始的计时时刻不一定必须是木块从A点释放的时刻.故A正确,BCD错误.故选:A故答案为:(1)0.4,1;(2)斜面倾角;(3)A【点评】解决本题的关键知道匀变速直线运动的推论,在某段时间内的平均速度等于中间时刻的瞬时速度,以及会通过实验的原理得出动摩擦因数的表达式,从而确定所需测量的物理量.23\n 四、计算或论述题,本题共4小题,共63分,把答案填在答题卡上,解答时请写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位15.(15分)(2022•惠州三模)在游乐场中,有一种大型游戏机叫“跳楼机”.参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40m高处,然后由静止释放.为研究方便,可以认为座椅沿轨道做自由落体运动1.2s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10m/s2)求:(1)座椅在自由下落结束时刻的速度是多大?(2)座椅在匀减速阶段的时间是多少?(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?【考点】牛顿第二定律;匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与位移的关系;自由落体运动.【专题】牛顿运动定律综合专题.【分析】(1)根据速度时间公式列式求解即可;(2)根据平均速度公式列式求解即可;(3)对匀减速下降过程,运用牛顿第二定律列式计算即可.【解答】解:(1)设座椅在自由下落结束时刻的速度为V,下落时间t1=1.2s由v=gt1得:v=12m/s即座椅在自由下落结束时刻的速度是12m/s.(2)设座椅自由下落和匀减速运动的总高度为h,总时间为t∴h=40﹣4=36m匀加速过程和匀减速过程的最大速度和最小速度相等,故平均速度相等,由平均速度公式,有解得:t=6s设座椅匀减速运动的时间为t2,则t2=t﹣t1=4.8s即座椅在匀减速阶段的时间是4.8s.(3)设座椅在匀减速阶段的加速度大小为a,座椅对游客的作用力大小为F由v﹣at2=0,解得a=2.5m/s2由牛顿第二定律:F﹣mg=ma解得:F=12.5m23\n所以即在匀减速阶段,座椅对游客的作用力大小是游客体重的1.25倍.【点评】本题关键分析求出乘客的运动情况,然后根据运动学公式求解出加速度,再根据牛顿第二定律列式计算. 16.(16分)(2022•乐山一模)一长为L的细线,上端固定,下端拴一质量为m、带电荷量为q的小球,处于如图所示的水平向右的匀强电场中,开始时,将线与小球拉成水平,然后释放小球由静止开始向下摆动,当细线转过60°角时,小球到达B点速度恰好为零.试求:(1)AB两点的电势差UAB;(2)匀强电场的场强大小;(3)小球到达B点时,细线对小球的拉力大小.【考点】电势差;共点力平衡的条件及其应用;动能定理的应用;电场强度.【专题】电场力与电势的性质专题.【分析】(1)小球从A到B的过程中,重力做正功mgLsin60°,电场力做功为qUAB,动能的变化量为零,根据动能定理求解电势差UAB;(2)根据电场强度与电势差的关系U=Ed求解场强.式中d是AB沿电场线方向的距离,d=L﹣Lcos60°.(3)小球在AB间摆动时具有对称性,B处绳拉力与A处绳拉力相等,研究A处绳子的拉力得到B处绳子的拉力.在A处小球水平方向平衡,由平衡条件求解拉力.【解答】解:(1)小球由A到B过程中,由动能定理得:mgLsin60°+qUAB=0所以UAB=﹣;(2)BA间电势差为UBA=﹣UAB=则场强E==;(3)小球在AB间摆动,由对称性得知,B处绳拉力与A处绳拉力相等,而在A处,由水平方向平衡有:FTA=Eq=mg,所以FTB=FTA=mg.答:(1)AB两点的电势差UAB为;23\n(2)匀强电场的场强大小是;(3)小球到达B点时,细线对小球的拉力大小是mg.【点评】本题第(3)问题也可以直接研究B处得到,小球在B处,沿绳方向合力为零,有:FTB=Eqcos60°+mgcos30°=mg. 17.(16分)(2022•宿迁模拟)如图所示,一物体M从A点以某一初速度沿倾角α=37°的粗糙固定斜面向上运动,自顶端B点飞出后,垂直撞到高H=2.25m的竖直墙面上C点,又沿原轨迹返回.已知B、C两点的高度差h=0.45m,物体M与斜面间的动摩擦因数μ=0.25,取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.试求:(1)物体M沿斜面向上运动时的加速度大小;(2)物体返回后B点时的速度;(3)物体被墙面弹回后,从B点回到A点所需的时间.【考点】牛顿第二定律;平抛运动.【专题】牛顿运动定律综合专题.【分析】(1)根据牛顿第二定律求出物体M沿斜面向上运动时的加速度大小;(2)物体从C点到B点的过程做平抛运动,根据平抛运动的高度求出到达B点时竖直方向上的分速度,结合平行四边形定则求出物体返回后B点的速度.(3)根据牛顿第二定律求出物体沿斜面下滑的加速度,结合位移时间公式求出从B点回到A点所需的时间.【解答】解:(1)物体M沿斜面向上运动时的加速度为a,由牛顿第二定律有:mgsinθ+μmgcosθ=ma代入数据得:a=8m/s2(2)物体从C点到B点做平抛运动,设落至B点时在竖直方向的速度为vBy,由平抛运动规律有:,代入数据得:=3m/s.由题意知,物体落在B点后刚好沿斜面下滑,则它落至B点时的速度方向沿斜面向下,与水平方向的夹角为37°大小为:(3)设物体从B点返回到A点过程中的加速度大小为a′,时间为t′,由牛顿第二定律得:mgsinθ﹣μmgcosθ=ma′代入数据得:a′=4m/s223\n由运动学公式有:代入数据得:t′=0.5s(﹣3s舍去)答:(1)物体M沿斜面向上运动时的加速度大小为8m/s2;(2)物体返回后B点时的速度为5m/s;(3)物体被墙面弹回后,从B点回到A点所需的时间为0.5s.【点评】本题考查了牛顿第二定律和运动学公式的综合,知道加速度是联系力学和运动学的桥梁,以及掌握平抛运动在水平方向和竖直方向上的运动规律,结合运动学公式灵活求解. 18.(16分)(2022•蓟县校级模拟)如图,传送带AB总长为l=10m,与一个半径为R=0.4m的光滑圆轨道BC相切于B点.传送带速度恒为v=6m/s,方向向右.现有一个滑块以一定初速度v0从A点水平冲上传送带,滑块质量为m=10kg,滑块与传送带间的动摩擦因数为μ=0.1.已知滑块运动到B端时,刚好与传送带共速.求(1)v0;(2)滑块能上升的最大高度h;(3)求滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能.【考点】动能定理的应用;功能关系.【专题】动能定理的应用专题.【分析】(1)以滑块为研究对象,由动能定理可以求出滑块的初速度.(2)由动能定理或机械能守恒定律可以求出滑块能上升的最大高度.(3)求出滑块第二次在传送带上滑行时,滑块与传送带间的相对位移,然后求出滑块和传送带系统产生的内能.【解答】解:(1)以滑块为研究对象,滑块在传送带上运动过程中,由动能定理得:滑块初速度大于传送带速度时:﹣μmgl=mv2﹣mv02,解得v0=m/s;滑块初速度小于传送带速度时:μmgl=mv2﹣mv02,解得v0=4m/s;(2)由动能定理可得:﹣mgh=0﹣mv2,解得h=1.8m;(3)以滑块为研究对象,由牛顿第二定律得:μmg=ma,滑块的加速度a=1m/s2,滑块减速到零的位移s==18m>10m,则滑块第二次在传送带上滑行时,速度没有减小到零就离开传送带,由匀变速运动的位移公式可得:l=vt﹣at2,即10=6t﹣×1×t2,解得t=2s,(t=10s舍去),在此时间内传送带的位移x=vt=6×2=12m,23\n滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能:Q=μmg(l+x)=0.1×10×10(10+12)=220J;答:(1)滑块的初速度为v0=4m/s或m/s.(2)滑块能上升的最大高度为1.8m.(3)滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能为220J.【点评】熟练应用动能定理是正确解题的关键;解题时要注意滑块的初速度与传送带速度间的关系,要讨论. 23