观察法找数列通项公式【观察法】(关键是找出各项与项数n的关系:横向看各项之间的关系结构,纵向看各项与项数n的内在联系,从而归纳出数列的通项公式。)例1、根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2),,,,,…;(3),2,,8,,…;(4)5,55,555,5555,….解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为an=(-1)n(6n-5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.知所求数列的一个通项公式为an=.(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即,,,,,…,从而可得数列的一个通项公式为an=.(4)将原数列改写为×9,×99,×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为an=(10n-1).2/2\n例2、数列0,,,,…的一个通项公式为( ).A.an=(n∈N*)B.an=(n∈N*)C.an=(n∈N*)D.an=(n∈N*)解析 将0写成,观察数列中每一项的分子、分母可知,分子为偶数列,可表示为2(n-1),n∈N*;分母为奇数列,可表示为2n-1,n∈N*,故选C.练习1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…(2)(3)(4)答案:(1)(2)(3)(4).2/2