【专项冲击波】2013年高考数学讲练测系列专题08解析几何(学生版)【考纲解读】1.掌握直线斜率与倾斜角、直线方程、两条直线平行垂直、距离等.2.掌握确定圆的几何要素、圆的标准方程与一般方程、点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系;初步了解用代数方法处理几何问题的思想.3.掌握椭圆的定义、标准方程和椭圆的简单几何性质;理解数形结合的思想;了解圆锥曲线的简单应用.4.了解双曲线的定义、几何性质,掌握双曲线的标准方程,会利用定义、标准方程和几何性质解决一些简单的问题.5.了解抛物线的定义、几何性质,掌握抛物线的标准方程,会利用定义、标准方程和几何性质解决一些简单的问题.6.了解圆锥曲线的简单应用,理解直线与椭圆、直线与抛物线的位置关系.【考点预测】本章知识的高考命题热点有以下两个方面:1.直线与圆是历年高考的重点考查内容,在客观题中出现,一般只有一个选择或填空,考查求圆的方程以及直线与圆的位置关系,难度较低;在解答题中出现,经常与圆锥曲线相结合。2.圆锥曲线是高考的一个热点内容,多数考查圆锥曲线的定义、方程和性质。在客观题中主要考查离心率、渐近线、定义和方程等,所以要熟练它们基本量之间的关系,掌握它们之间转化的技巧与方法。解答题多对圆锥曲线方程、直线与圆锥曲线的位置关系(包括弦长、中点弦、曲线方程求法等)综合考查,多在与其它知识的交汇点处(如平面向量等)命题,组成探索性及综合性大题,考查学生分析问题、解决问题的能力,难度较大。【要点梳理】1.直线的倾斜角与斜率:,.2.直线方程的几种形式:经常用的有点斜式、斜截式、一般式、截距式,注意其各自的适应条件.3.平行与垂直:掌握两直线平行与垂直的条件,同时要注意其各自的适应范围.4.距离:熟练点到直线的距离与两条件平行直线的距离公式.5.熟记圆的标准方程与一般方程.6.位置关系:点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系.7.熟记椭圆、双曲线、抛物线的定义、方程及几何性质.8.熟练弦长公式、中点弦的求法(联立方程组与点差法).【考点在线】考点一 两条直线的位置关系(平行与垂直)例1.(2012年高考浙江卷文科4)设a∈R,则“a=1”是“直线l1:ax+2y=0与直线l2:x+(a+1)y+4=0平行的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件9\n练习1:(北京市昌平区2013年1月高三上学期期末文2)“”是“直线垂直”的()A.充分不必要条件B必要不充分条件C.充要条件D.既不充分也不必要条件考点二 圆的方程、直线与圆例2.(北京市昌平区2013年1月高三上学期期末文12)以双曲线的右焦点为圆心,并与其渐近线相切的圆的标准方程是.练习2:(2012年高考山东卷文科9)圆与圆的位置关系为()(A)内切 (B)相交 (C)外切 (D)相离考点三 圆锥曲线的定义、方程、几何性质例3.(2012年高考新课标全国卷文科4)设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为()练习3:(山东省实验中学2013届高三第三次诊断性测试文)椭圆的焦距为()A.10B.5C.D.考点四 直线与圆锥曲线的综合应用例4.(2012年高考山东卷文科21)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.练习3:(2012年高考浙江卷文科22)(本题满分14分)如图,在直角坐标系xOy中,点P(1,9\n)到抛物线C:=2px(P>0)的准线的距离为。点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分。(1)求p,t的值。(2)求△ABP面积的最大值。【考题回放】1.(山东省实验中学2013届高三第三次诊断性测试文)已知两条直线和互相平行,则等于()A.1或-3B.-1或3C.1或3D.-1或32.(2012年高考辽宁卷文科7)将圆x2+y2-2x-4y+1=0平分的直线是()(A)x+y-1=0(B)x+y+3=0(C)x-y+1=0(D)x-y+3=03.(2012年高考广东卷文科8)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x²+y²=4相交于A、B两点,则弦AB的长等于()A.B.C.D.14.(2012年高考新课标全国卷文科10)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()5.(2012年高考山东卷文科11)已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为()(A) (B) (C) (D)6.(2011年高考安徽卷文科4)若直线过圆的圆心,则a的值为9\n()(A)1(B)1(C)3(D)37.(2012年高考福建卷文科5)已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于()ABCD8.(2012年高考浙江卷文科8)如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.D.9.(2011年高考广东卷文科8)设圆C与圆外切,与直线相切.则C的圆心轨迹为()A.抛物线B.双曲线C.椭圆D.圆10.(山东省聊城市东阿一中2013届高三上学期期初考试)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为()A.B.C.D.11.(2012年高考四川卷文科9)已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则()A、B、C、D、9\n12.(山东省实验中学2013届高三第三次诊断性测试文)已知椭圆:,左右焦点分别为,过的直线交椭圆于A,B两点,若的最大值为5,则的值是()A.1B.C.D.13.(2012年高考江苏卷12)在平面直角坐标系中,圆C的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.14.(2012年高考江西卷文科14)过直线x+y-=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是__________。15.(2012年高考上海卷文科4)若是直线的一个方向向量,则的倾斜角的大小为 (结果用反三角函数值表示).16.(2012年高考浙江卷文科17)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=_______.17.(2012年高考江苏卷12)在平面直角坐标系中,圆C的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.18.(2012年高考江西卷文科14)过直线x+y-=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是__________。19.(2012年高考四川卷文科21)(本小题满分12分)如图,动点与两定点、构成,且直线的斜率之积为4,设动点的轨迹为。(Ⅰ)求轨迹的方程;(Ⅱ)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。9\n【高考冲策演练】一、选择题:1.(山东省实验中学2013届高三第一次诊断性测试文)已知倾斜角为的直线与直线x-2y十2=0平行,则tan2的值()A.B.C.D.2.(2012年高考重庆卷文科3)设A,B为直线与圆的两个交点,则()(A)1(B)(C)(D)23.(2012年高考湖北卷文科5)过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为A.x+y-2=0B.y-1=0C.x-y=0D.x+3y-4=04.(2012年高考安徽卷文科9)若直线与圆有公共点,则实数取值范围是()(A)(B)(C)(D)5.(北京市朝阳区2013届高三上学期期末文3)“”是“直线与圆相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(2012年高考陕西卷文科6)已知圆,过点的直线,则()A与相交B与相切C与相离D.以上三个选项均有可能7.(2012年高考江西卷文科8)椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A.B.C.D.8.(2012年高考上海卷文科16)对于常数、,“”是“方程的曲线是椭圆”的()9\nA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(2012年高考湖南卷理科5)已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.-=1B.-=1C.-=1D.-=1[w~#ww.zz&st^ep.com@]10.(2012年高考福建卷理科8)双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B.C.3D.511.(山东省兖州市2013届高三9月入学诊断检测文)若m是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.12.(2012年高考全国卷文科10)已知、为双曲线的左、右焦点,点在上,,则()(A)(B)(C)(D)二.填空题:13.(2012年高考北京卷文科9)直线被圆截得弦长为__________。14.(2012年高考天津卷文科12)设,若直线与轴相交于点A,与y轴相交于B,且l与圆相交所得弦的长为2,O为坐标原点,则面积的最小值为。15.(2012年高考辽宁卷文科15)已知双曲线x2y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则∣PF1∣+∣PF2∣的值为___________________.9\n16.(2012年高考江西卷理科13)椭圆(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为_______________.三.解答题:17.(2012年高考广东卷文科20)(本小题满分14分)在平面直角坐标系xoy中,已知椭圆C1:的左焦点为F1(-1,0),且点P(0,1)在C1上。(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:相切,求直线l的方程.18.(2011年高考福建卷文科18)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A。(1)求实数b的值;(11)求以点A为圆心,且与抛物线C的准线相切的圆的方程.19.(2011年高考全国新课标卷文科20)在平面直角坐标系中,曲线坐标轴的交点都在圆C上,(1)求圆C的方程;(2)如果圆C与直线交于A,B两点,且,求的值。20.(2011年高考陕西卷文科17)设椭圆C:过点(0,4),离心率为9\n(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的中点坐标。21.(2012年高考广东卷文科20)(本小题满分14分)在平面直角坐标系xoy中,已知椭圆C1:的左焦点为F1(-1,0),且点P(0,1)在C1上。(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:相切,求直线l的方程.22.(2012年高考山东卷文科21)(本小题满分13分)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.9