新津中学高二12月月考试题数学(文科)一、选择题(5*12=60)1.一个几何体的三视图如图所示,则该几何体的表面积为()A.36B.37C.38D.392.直线2xcosα-y-3=0的倾斜角的取值范围是( )A. B.C.D.3.已知直线a和平面α,β,α∩β=l,aα,aβ,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行 B.相交或异面C.平行或异面D.相交、平行或异面4.如图所示,程序框图(算法流程图)的输出结果为( )A.B.C.D.5.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,326.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( )A.相交B.相切C.相离D.不确定7.设x,y满足约束条件则z=x+2y的最大值为( )A.8 B.7 C.2 D.18.如果一个水平放置的图形的斜二测直观图是一个底角均为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.2+ B. C. D.1+9.已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a的值为( )A.0或3B..0或4C..0或5D..0或610.在正四棱锥S-ABCD中,SO⊥平面ABCD于O,SO=2底面边长为7,点P,Q分别在线段BD,SC上移动,则PQ两点的最短距离为()A.B.C.2D.111.若圆x2+y2=r2(r>0)上仅有4个点到直线x-y-2=0的距离为1,则实数r的取值范围为( )A.(+1,+∞)B.(-1,+1)C.(0,-1)D.(0,+1)12.如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH平面ABCD,BC∥平面GEFH.若EB=2,则四边形GEFH的面积为()A.16B.17C.18D.19二、填空题(5*4=20)13.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为_______件.14.n=10S=100DO S=S-nn=n-1LOOP UNTIL S<=70PRINT nEND程序运行的结果为________15.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________________.16.如图,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的有________(写出全部正确命题的序号).①平面ABC⊥平面ABD;②平面ABD⊥平面BCD;③平面ABC⊥平面BDE,且平面ACD⊥平面BDE;④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.三.解答题(共70分)17.(本小题满分12分)已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a,b的值.(1)直线l1过点(-3,-1),并且直线l1与l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.18.(本小题满分12分)如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABCA1B1C1的高.719.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在下表中作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);方差公式:S2=(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?20.(本小题满分12分)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(本小题满分12分)(1)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为多少?(2)(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.722.(本小题满分10分)如图所示,已知二面角αMNβ的大小为60°,菱形ABCD在面β内,A,B两点在棱MN上,∠BAD=60°,E是AB的中点,DO平面α,垂足为O.(1)证明:AB平面ODE;(2)求异面直线BC与OD所成角的余弦值.7文科数学参考答案一.1.C2.B3.D4.C5.B6.A7.B8.A9.D10.B11.A12C12.连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为PA=PC,O是AC的中点,所以POAC,同理可得POBD.又BD∩AC=O,且AC,BD都在底面内,所以PO底面ABCD.又因为平面GEFH平面ABCD,且PO平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,且GK底面ABCD,从而GKEF.所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB=DB=OB,即K为OB的中点.再由PO∥GK得GK=PO,即G是PB的中点,且GH=BC=4.由已知可得OB=4,PO===6,所以GK=3.故四边形GEFH的面积S=·GK=×3=18.二.13.180014.615.x2+(y-1)2=1.16.三.解答题17.解:(1)∵l1⊥l2,∴a(a-1)+(-b)·1=0,即a2-a-b=0.①又点(-3,-1)在l1上,∴-3a+b+4=0②由①②得a=2,b=2.(2)∵l1∥l2,∴=1-a,b=,故l1和l2的方程可分别表示为:(a-1)x+y+=0,(a-1)x+y+=0,又原点到l1与l2的距离相等.∴4=,∴a=2或a=,∴a=2,b=-2或a=,b=2.18.解析:(1)(2)质量指标值的样本平均数为7=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.19.解析:(1)连接BC1,则O为B1C与BC1的交点.因为侧面BB1C1C为菱形,所以B1C⊥BC1.又AO⊥平面BB1C1C,所以B1C⊥AO,故B1C⊥平面ABO.由于AB⊂平面ABO,故B1C⊥AB.(2)作OD⊥BC,垂足为D,连接AD.作OH⊥AD,垂足为H.由于BC⊥AO,BC⊥OD,故BC⊥平面AOD,所以OH⊥BC.又OH⊥AD,所以OH⊥平面ABC.因为∠CBB1=60°,所以△CBB1为等边三角形,又BC=1,可得OD=.由于AC⊥AB1,所以OA=B1C=.由OH·AD=OD·OA,且AD==,得OH=.又O为B1C的中点,所以点B1到平面ABC的距离为.故三棱柱ABCA1B1C1的高为.20.解析:(1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以l的斜率为-,故l的方程为y=-x+.又|OM|=|OP|=2,O到l的距离为,|PM|=,所以△POM的面积为.21.(1)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P==.(2)依条件可知,点M均匀地分布在平面区域内,该平面区域的图形为图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为,其图形如图中的三角形OAD(阴影部分).7又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0),D,则三角形OAD的面积为S1=×3×=.故所求事件的概率为P===.22.解:(1)证明:如图,因为DOα,ABα,所以DOAB.连接BD,由题设知,△ABD是正三角形.又E是AB的中点,所以DEAB.而DO∩DE=D,故AB平面ODE.(2)因为BC∥AD,所以BC与OD所成的角等于AD与OD所成的角,即∠ADO是BC与OD所成的角.由(1)知,AB平面ODE,所以ABOE.又DEAB,于是∠DEO是二面角αMNβ的平面角,从而∠DEO=60°.不妨设AB=2,则AD=2,易知DE=.在Rt△DOE中,DO=DE·sin60°=.连接AO,在Rt△AOD中,cos∠ADO===.故异面直线BC与OD所成角的余弦值为.7