青岛市2021—2022学年度第一学期期中教学质量检测高三数学试题2021.11本试卷分第I卷(选择题)和第II卷(非选择题)两部分。满分150分,考试用时120分钟。考试结束后,将本试卷和答案卡一并交回。注意事项:l.答第I卷前考生务必将自己的姓名、准考证号填写在答题卡上。2.选出每小题答案前,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。所有试题的答案,写在答题卡上,不能答在本试卷上,否则无效。第I卷(选择题共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合,则A.B.C.D.2.已知命题,则命题p的否定是A.B.C.D.3.若复数z满足,则复数z的共轭复数不可能为A.2+8iB.C.5+iD.5-7i4.若,则A.6B.3C.1D.5.函数的函象大致为6.在中,,P为边AC上的动点,则的取值范围是A.B.[12,16]C.D.
7.已知是四条直线,如果.则结论“a//b”与“c//d”中成立的情况是A.一定同时成立B.至多一个成立C.至少一个成立D.可能同时不成立8.已知a>b>0,且a+b=1,下列不等式中一定成立的是A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知,则下列叙述中正确的是A.若,则B.若,则C.“a>1”是“”的充分不必要条件D.若,则的最小值为10.已知为等差数列的前项和,且,则下列结论正确的是A.B.为递减数列C.是和的等比中项D.的最小值为11.如图,底面ABCD为边长是4的正方形,半圆面底面ABCD.点P为半圆弧(不含A,D点)一动点.下列说法正确的是A.三梭锥P—ABD的每个侧面三角形都是直角三角形B.三棱锥P—ABD体积的最大值为C.三梭锥P—ABD外接球的表面积为定值D.直线PB与平面ABCD所成最大角的正弦值为12.已知函数,则下列结论正确的是A.值域为
B.在上递增C.D.当时,函数恰有5个不同的零点第II卷(非选择题共90分)三、填空题:本题共4个小题,每小题5分,共20分.13.已知向量的夹角为,,则___________;l4.如图是函数的部分图象,已知函数图象经过两点,则____________.15.对于函数,若在定义域内存在实数满足,则称为“倒戈函数”,设函数是定义在上的“倒戈函数”,则实数m的取值范围是____________;16.在数列的每相邻两项之间插入此两项的平均数,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列;第二次得到数列;第次得到数列1,…,2,则第n次得到的数列项数为__________;记第次得到的数列的所有项和为,则数列的前项和___________.四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。17.(本小题满分10分)个内角A,B,C的对边分别是a,b,c,且.(1)求的大小;(2)若,求的面积.18.(本小题满分12分)已知函数是定义在R上的奇函数,且时,.
(1)求函数的解析式;(2)若对任意x恒成立,求实数的取值范围.19.(本小题满分12分)已知函数.(1)求函数的单调增区间;(2)若函数在区间恰有两个零点,求的取值范围.20.(本小题满分12分)在等腰梯形ABCD中,AB//CD,,AB=2CD=4,点E为AB的中点,将沿DE折起,使点A到达P的位置,得到如图所示的四棱锥,点M为棱PB的中点。(1)求证:PD//面MCE;(2)若平面平面EBCD,求平面PDE与平面PBC的夹角.21.(本小题满分12分)已知数列满足.(1)设,证明:数列为等比数列;(2)求数列的前项和.22.(本小题满分12分)
已知函数.(1)求曲线在处的切线方程;(2)若不等式恒成立,求的范围。2021.11高三期中答案一、选择题题号123456789101112答案DCADABCDBCDADACAD二、填空题13.14.15.16.,三、17.(本小题满分10分)解:(1)由正弦定理得:···························································5分(2)由余弦定理得:
········································8分·······················10分18.(本小题满分12分)解:(1)设又是定义在上的奇函数,·······································6分(2)恒成立是定义在上的奇函数·············································8分又在上递增··················································10分令恒成立···············································12分19.(本小题满分12分)
解(1)····································4分单调增区间为·····························6分(2),,的图象如图要使在在有两个零点·······························12分20.(本小题满分12分)解:(1)连接交点为,连接,为平行四边形为中点,又点为棱的中点··········································2分面,面面···········································4分(2)四边形为平行四边形,四边形为等腰梯形又
························6分又面平面,面,面面··························8分DPEBC所以,可以如图以为原点,为轴,在平面中过做与面垂直的有向直线为轴,建立空间直角坐标系.,,,,,设为平面的一个法向量则解得同理得:平面的一个法向量·····················10分设平面与平面的夹角为则平面与平面的夹角为·····················12分21.(本小题满分12分)解:(1)数列为以为首项,公比为的等比数列.·····························6分(1)由(1)知
令···················································10分··············································11分···········································12分22.(本小题满分12分)解:(1)·····························2分,切线方程为·····································5分(2)不等式在恒成立即恒成立令,····································6分
令在区间为增函数,且,满足,则为减函数为增函数··································9分所以,又因为,··························10分又因为在为增函数所以,,····················································1