专题2.12函数模型及其应用一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是________(填序号).x45678910y15171921232527【答案】①【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).【答案】①3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.【答案】10【解析】设A种方式对应的函数解析式为s=k1t+20,B种方式对应的函数解析式为s=k2t,当t=100时,100k1+20=100k2,∴k2-k1=,t=150时,150k2-150k1-20=150×-20=10.4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.-8-\n【答案】20【解析】设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,Smax=400.5.(2022·长春模拟)一个容器装有细沙acm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,tmin后剩余的细沙量为y=ae-bt(cm3),经过8min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.【答案】166.A,B两只船分别从在东西方向上相距145km的甲乙两地开出.A从甲地自东向西行驶.B从乙地自北向南行驶,A的速度是40kmh,B的速度是16kmh,经过________h,AB间的距离最短.【答案】【解析】设经过xh,A,B相距为ykm,则y==(0≤x≤),求得函数的最小值时x的值为.7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________.【答案】10【解析】设该企业需要更新设备的年数为x,设备年平均费用为y,则x-8-\n年后的设备维护费用为2+4+…+2x=x(x+1),所以x年的平均费用为y==x++1.5,由基本不等式得y=x++1.5≥2+1.5=21.5,当且仅当x=,即x=10时取等号.8.某公司为激励创新,计划逐年加大研发奖金投入.若该公司2022年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30).【答案】2022二、解答题9.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P-A1B1C1D1,下部分的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?解 (1)V=×62×2+62×2×4=312(m3).(2)设PO1=x,则O1B1=,B1C1=·,∴SA1B1C1D1=2(62-x2),又由题意可得下面正四棱柱的高为4x.则仓库容积V=x·2(62-x2)+2(62-x2)·4x=-8-\nx(36-x2).由V′=0得x=2或x=-2(舍去).由实际意义知V在x=2(m)时取到最大值,故当PO1=2m时,仓库容积最大.10.(2022·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?能力提升题组11.(2022·南京调研)某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax-8-\n+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.解 (1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一 依题意x=0.2a,所以P====12.(2022·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.解 (1)当20≤x≤180时,由得故q(x)=(2)设总利润f(x)=x·q(x),由(1)得f(x)=当0<x≤20时,f(x)==126000-,又f(x)在(0,20]上单调递增,-8-\n所以当x=20时,f(x)有最大值120000.当20<x<180时,f(x)=9000x-300·x,f′(x)=9000-450·,令f′(x)=0,得x=80.当20<x<80时,f′(x)>0,f(x)单调递增,当80<x<180时,f′(x)<0,f(x)单调递减,所以当x=80时,f(x)有最大值240000.当x≥180时,f(x)=0.综上,当x=80元时,总利润取得最大值240000元.13.(2022·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/时,乙的路线是ABCD,速度为v千米/时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.-8-\n-8-\n-8-