课时提升练(十七) 同角三角函数的基本关系及诱导公式一、选择题1.tan300°+sin450°的值为( )A.1+ B.1-C.-1-D.-1+【解析】 tan300°+sin450°=-tan60°+sin90°=1-.【答案】 B2.已知α是第二象限角,sinα=,则cosα=( )A.- B.- C. D.【解析】 因为α为第二象限角,所以cosα=-=-.【答案】 A3.在△ABC中,若tanA=-2,则cosA=( )A.B.-C.D.-【解析】 ∵在△ABC中,tanA=-2,∴A∈,∴cosA=-=-.【答案】 B4.若sinθcosθ=,则tanθ+的值是( )A.-2B.2C.±2D.【解析】 tanθ+=+==2.【答案】 B5.已知sin(π-α)=log8,且α∈,则tan(2π-α)的值为( )A.-B.5\nC.±D.【解析】 sin(π-α)=sinα=log8=-,又α∈,得cosα==,tan(2π-α)=tan(-α)=-tanα=-=.【答案】 B6.若θ∈,则=( )A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ【解析】 ∵==|sinθ-cosθ|,又θ∈,∴sinθ-cosθ>0,∴原式=sinθ-cosθ.【答案】 A7.已知sin(π-2)=a,则sin的值为( )A.-B.-aC.D.a【解析】 ∵sin(π-2)=a,∴sin2=a.∴cos2=-.∴sin=cos2=-.【答案】 A8.已知α为锐角,且2tan(π-α)-3cos+5=0,tan(π+α)+6sin(π+β)=1,则sinα的值是( )A.B.C.D.【解析】 由已知得-2tanα+3sinβ+5=0,tanα-6sinβ=1,解得tanα=3,故sinα=.【答案】 C9.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则f(25\n015)的值为( )A.-1B.1C.3D.-3【解析】 ∵f(4)=asin(4π+α)+bcos(4π+β)=asinα+bcosβ=3.∴f(2015)=asin(2015π+α)+bcos(2015π+β)=asin(π+α)+bcos(π+β)=-asinα-bcosβ=-(asinα+bcosβ)=-3.【答案】 D10.当0<x<时,函数f(x)=的最小值是( )A.B.C.2D.4【解析】 当0<x<时,0<tanx<1,f(x)==,设t=tanx,则0<t<1,y==≥4.当且仅当t=1-t,即t=时等号成立.【答案】 D11.已知sinθ=,cosθ=,则tan(kπ+θ)(k∈Z)的值为( )A.B.±C.-D.-或-【解析】 由2+2=1,得m=8或m=0.∴sinθ=,cosθ=-或sinθ=-,cosθ=.∴tan(kπ+θ)=tanθ=-或-.【答案】 D二、填空题12.已知cos(75°+α)=,-180°<α<-90°,则tan(15°-α)=________.5\n【解析】 由-180°<α<-90°得,-105°<α+75°<-15°,∴sin(75°+α)=-=-,又cos(15°-α)=cos[90°-(75°+α)]=sin(75°+α),sin(15°-α)=sin[90°-(75°+α)]=cos(75°+α),∴tan(15°-α)=-.【答案】 -13.已知tanα=2,则7sin2α+3cos2α=________.【解析】 7sin2α+3cos2α====.【答案】 14.已知α和β的终边关于直线y=x对称,且β=-,则sinα等于________.【解析】 ∵α与β的终边关于直线y=x对称,∴α+β=2kπ+(k∈Z),又β=-,∴α=2kπ+(k∈Z),故sinα=.【答案】 15.已知cos=a(|a|≤1),则cos+sin=________.【解析】 cos=cos=-cos=-a.sin=sin=cos=a,∴cos+sin=0.【答案】 016.若=2,则sin(θ-5π)sin=______.【解析】 由=2得,sinθ+cosθ=2(sinθ-cosθ),平方得:1+2sinθcosθ=4(1-2sinθcosθ),5\n故sinθcosθ=,∴sin(θ-5π)sin=sinθcosθ=.【答案】 5